Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

نویسندگان

  • Ivan Ňancucheo
  • D. Barrie Johnson
چکیده

Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12-14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph "Acidocella aromatica." The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine.

A pilot passive treatment plant (PPTP) was constructed to evaluate the potential of a composite wetland system to remediate acidic, metal-rich water draining the former Wheal Jane tin, in Cornwall, England. The treatment plant consists of three separate and controllable composite systems, each of which comprises a series of aerobic wetlands for iron oxidation and precipitation, a compost biorea...

متن کامل

Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals.

Acidophilic, heterotrophic bacteria isolated from acidic mine effluent metabolised a range of aliphatic compounds. Aliphatic acids, which are normally thought to be toxic to acidophiles, were utilised as substrates for energy and growth by these bacteria. This biodegradative ability, concomitant with their tolerance of heavy metals, has demonstrated the potential for using these organisms for t...

متن کامل

Editorial: Recent Advances in Acidophile Microbiology: Fundamentals and Applications

Acidophilic microorganisms thrive in extremely low pH natural and man-made environments such as acidic lakes, some hydrothermal systems, acid sulfate soils, sulfidic regoliths and ores, as well as metal and coal mine-impacted environments. The most widely studied acidophiles, prokaryotes that oxidize reduced iron and/or sulfur, are able to catalyze the oxidative dissolution of metal sulfide min...

متن کامل

Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron.

A heterotrophic bacterium, isolated from an acidic stream in a disused pyrite mine which contained copious growths of "acid streamers," displayed characteristics which differentiated it from previously described mesophilic acidophiles. The isolate was obligately acidophilic, with a pH range of 2.0 to 4.4 and an optimum pH of 3.0. The bacterium was unable to fix carbon dioxide but oxidized ferro...

متن کامل

Effects of acidophilic protozoa on populations of metal-mobilizing bacteria during the leaching of pyritic coal

Five acidophilic protozoa (three flagellates, one ciliate and one amoeba) were isolated from acid mine water and a coal biotreatment plant, and grown in mixed cultures with acidophilic bacteria. Cultures were routinely maintained in ferrous sulphate media: in media containing pyrite or pyritic coal, protozoa grew in cultures containing coarse-grain (61-200 pm) but not fine-grain (c 61 pm) miner...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012